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Abstract. Selection of a modeling approach is an important step in the conservation
planning process, but little guidance is available. We compared two statistical and three
theoretical habitat modeling approaches representing those currently being used for avian
conservation planning at landscape and regional scales: hierarchical spatial count (HSC),
classification and regression tree (CRT), habitat suitability index (HSI), forest structure
database (FS), and habitat association database (HA). We focused our comparison on models
for five priority forest-breeding species in the Central Hardwoods Bird Conservation Region:
Acadian Flycatcher, Cerulean Warbler, Prairie Warbler, Red-headed Woodpecker, and
Worm-eating Warbler. Lacking complete knowledge on the distribution and abundance of
each species with which we could illuminate differences between approaches and provide
strong grounds for recommending one approach over another, we used two approaches to
compare models: rank correlations among model outputs and comparison of spatial
correspondence. In general, rank correlations were significantly positive among models for
each species, indicating general agreement among the models. Worm-eating Warblers had the
highest pairwise correlations, all of which were significant (P , 0.05). Red-headed
Woodpeckers had the lowest agreement among models, suggesting greater uncertainty in
the relative conservation value of areas within the region. We assessed model uncertainty by
mapping the spatial congruence in priorities (i.e., top ranks) resulting from each model for
each species and calculating the coefficient of variation across model ranks for each location.
This allowed identification of areas more likely to be good targets of conservation effort for a
species, those areas that were least likely, and those in between where uncertainty is higher and
thus conservation action incorporates more risk. Based on our results, models developed
independently for the same purpose (conservation planning for a particular species in a
particular geography) yield different answers and thus different conservation strategies. We
assert that using only one habitat model (even if validated) as the foundation of a conservation
plan is risky. Using multiple models (i.e., ensemble prediction) can reduce uncertainty and
increase efficacy of conservation action when models corroborate one another and increase
understanding of the system when they do not.

Key words: Bayesian hierarchical model; Breeding Bird Survey; classification and regression tree; forest
inventory and analysis; habitat suitability index; model uncertainty; species distribution model.

INTRODUCTION

Habitat models are a vital component of the

conservation planning process (Will et al. 2005) because

they tie populations to landscape conditions, formalize

uncertainties as testable assumptions, and create a direct

link between management and research (National

Ecological Assessment Team 2006). Researchers have

generally employed two main classes of wildlife–habitat

models to link avian populations to estimates of habitat

(Millspaugh and Thompson 2009). Statistical models

(i.e., inductive approaches) use empirical data to
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quantify patterns of coincidence between population

characteristics and habitat conditions (Morrison et al.

1998). Techniques within this class of models include

regression techniques (e.g., Jones et al. 2002), hierarchi-

cal models (e.g., Thogmartin and Knutson 2007), and

machine learning techniques such as neural networks

(e.g., Lusk et al. 2002). Alternatively, theoretical models

(i.e., deductive approaches) rely on literature and/or

expert opinion to identify relationships between popu-

lations and habitat condition (Morrison et al. 1998).

Techniques within this class of models include expert

systems (e.g., Lower Mississippi Valley Joint Venture

Forest Resource Conservation Working Group 2007),

database models (e.g., Thogmartin et al. 2006a), and

index models (e.g., Dijak and Rittenhouse 2009).

The different basis of these models may affect their

utility for ecoregional-scale planning for a variety of

species. The statistical approach provides a more

objective assessment of current bird-habitat relation-

ships; however, it typically requires large amounts of

data collected with an appropriate experimental design

(Millspaugh and Thompson 2009). Therefore, species

whose abundance is poorly known (e.g., nocturnal or

rare species) may be poorly modeled statistically

(McPherson and Jetz 2007) or there may be a mismatch

between the scope of inference of the available data and

the question being asked. Additionally, by failing to

consider the underlying processes explicitly (Peterjohn

2001), statistical patterns in the data may be artifactual,

reducing the portability of these models beyond the

regions and times in which they were developed.

Further, statistical approaches tend to work better for

specialists than for generalists (Thuiller et al. 2004,

Hernandez et al. 2006). The theoretical approach may

overcome these issues by relying less on raw data and

more on a priori knowledge of the putative relationships

between a species and its habitat (Fitzgerald et al. 2009).

However, a theoretical approach may introduce bias

into the models (e.g., biases associated with expert

opinion) or overlook important but unidentified habitat

cues.

With an increasing arsenal of analytical tools at our

disposal (Guisan and Zimmermann 2000, Elith and

Graham 2009, Millspaugh and Thompson 2009), the

crisis is not the lack of an available method but the

selection of an appropriate one. The growing body of

literature on species distribution models (e.g., habitat

models, ecological niche models) does not provide clear

guidance for selecting appropriate methods (Elith and

Graham 2009). Further, studies comparing modeling

techniques have largely been academic exercises focused

on comparing statistical methods (e.g., Marmion et al.

2009, Murtaugh 2009, Thuiller et al. 2009), despite the

fact that theoretical models are widely used in conser-

vation planning (Brooks 1997). Statistical and theoret-

ical approaches have not been directly compared and the

relative efficacy of each to facilitate bird conservation

planning at multiple spatial scales (local, regional,

national, or continental) remains unknown.

Our objective was to compare five habitat modeling

approaches that are being used to assess avian habitat at

the scale of a bird conservation region (BCR). Two

approaches were classified as statistical modeling ap-

proaches because they were developed using Breeding

Bird Survey (BBS) data: hierarchical spatial count

(HSC; Thogmartin et al. 2004, 2006b) and classification

and regression tree (CRT; Fearer et al. 2007). Three

approaches were classified as theoretical modeling

approaches because they were based on literature

reviews or expert opinion: habitat suitability index

(HSI; Tirpak et al. 2009a, b, c), forest structure database

(FS), and habitat association database (HA). The HSC,

CRT, and HSI methodologies utilize nationally avail-

able land cover data to assess the effects of habitat

configuration and composition on avian presence and

abundance. All five approaches used here incorporate

Forest Inventory and Analysis (FIA) data to assess the

effects of forest age and structure, which has been

lacking in previous large-scale models. We developed the

two database approaches (FS and HA) because they

represent a spatially inexplicit alternative to the other

models that could be quickly estimated without complex

spatial analyses, and because they are similar to

database approaches being used in some western BCRs

(Fitzgerald et al. 2009). We assessed how well these

approaches agreed with each other and how well they

captured conditions in the field. We believed such

comparison would provide important insights to con-

servation planners who rely on these models to guide

their planning for habitat restoration and management

efforts.

METHODS

We focused our comparison on models for five

priority (Rich et al. 2004, Panjabi et al. 2005) forest-

breeding species in the Central Hardwoods (CH) BCR:

Acadian Flycatcher (Empidonax virescens), Cerulean

Warbler (Dendroica cerulea), Prairie Warbler (Dendroica

discolor), Red-headed Woodpecker (Melanerpes eryth-

rocephalus), and Worm-eating Warbler (Helmitheros

vermivorus). The CH BCR is centrally located on the

North American continent, encompassing a 30-million-

ha area that straddles the Mississippi River (Fig. 1). The

mixed mesophytic and oak (Quercus spp.)–hickory

(Carya spp.) forests of the BCR provide habitat for

many high-priority bird species (U.S. North American

Bird Conservation Initiative Committee 2000), including

these focal species.

Statistical models

Bayesian hierarchical spatial count models have been

used to model patterns in the predicted relative

abundance for more than two dozen species of

conservation concern in eastern and central North

America (Thogmartin et al. 2004, Thogmartin and
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Knutson 2004, 2006b, 2007, Forcey et al. 2007). These

methods were used to develop HSC models from data in

the BBS, the National Land Cover Database (NLCD),

the National Elevation Dataset (NED), and the Forest

Inventory and Analysis (FIA) database. Models for all

five species examined the same variables (Table 1). This

assumes that the distribution and abundance of each

species are limited by the same set of factors, though

each factor can have different degrees of influence on

each species. BBS data provided the response variable

(birds/route) for the models, as well as several predictor

variables. We built the models based on annual data for

177 routes within and around (100-km buffer) the CH

BCR during the 11-year period centered on the nominal

date of the 2001 NLCD (1995–2005); we conducted an

internal validation (Table 2) using data from within the

period for which the models were built and for the two

years following the model building period (2006 and

2007). Predictor variables were generated from the

NLCD using Fragstats software or statistical analysis

(software available online).10 The FIA program provided

summary statistics of forest structure from the first

annual cycle for each state covered by the BCR (i.e.,

data closest to 2001) within tessellation polygons around

each route (Thogmartin et al. 2004). Although models

were developed using estimates of the predictor variables

within nested buffers (100 m, 1 km, and 10 km) around

each BBS route, only models based on the 100-m buffer

were used in this analysis because of similarity in model

composition and parameter estimates across scales

(W. E. Thogmartin, unpublished data; also see Laurent

et al. 2005). These HSC models do not have a well-

defined resolution, but outputs were mapped across the

BCR at an ad hoc resolution of 100 3 100 m pixels.

Thus, outputs are interpreted as the predicted number of

FIG. 1. Location of the Central Hardwoods Bird Conservation Region (CHBCR) in the central United States and the
boundaries of ecological subsections used as planning units within the region.

10 hhttp://www.umass.edu/landeco/research/fragstats/
fragstats.htmli
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birds per route that could be expected if a route was

centered on that cell and run in average conditions

(observer, year, temperature, etc.).

Similar to the HSC approach, CRT models were

developed from BBS, NLCD, and FIA data. Abundance

data (2000–2005) were gathered for each BBS route

within the CH BCR and average abundance was

calculated for each route separately by state using a 3-

year (Cerulean Warbler only) or 4-year window

concluding the same year as the most recent 5-year

annual FIA cycle (2004 or 2005) for that state. We

excluded routes not having acceptable runs (e.g.,

conducted during poor weather, exceeded time limita-

tions) as defined by the BBS (Sauer et al. 2008) for any

of the years within their given window. Based on these

criteria, 62 routes were suitable for analyses for four of

the five species; 82 routes were suitable for the Cerulean

Warbler because of the smaller time window. Fifty FIA

variables (see Table 2 in Fearer et al. 2007) were

aggregated from the plot level to county level using

expansion factors and algorithms as described in the

FIA database user’s guide (U.S. Department of

Agriculture Forest Service 2010). We focused on

variables that described forest structural attributes as

many studies have demonstrated the importance of

microhabitat structure to habitat suitability (Hagan and

Meehan 2002, Lichstein et al. 2002, MacFaden and

Capen 2002). We used Fragstats software to generate

landscape-level predictor variables from the NLCD,

developing 14 metrics at the forest cover class level and

15 metrics for the landscape as a whole (see Table 3 in

Fearer et al. 2007). Models were developed using

estimates of predictor variables at three logarithmically

related buffer distances (i.e., landscapes) around each

route (100 m, 1 km, and 10 km). Fragstats metrics were

calculated directly for each buffer; values of FIA

variables were calculated as area-weighted averages

from the county-level estimates, with the weights

calculated as the proportional area a given county

composed within the buffer (Fearer et al. 2007). Unlike

the HSC approach, CRT models were more exploratory,

allowing the inclusion of variables in the models to vary

according to species and landscape. This assumes that

the distribution and abundance of individual species are

controlled by different factors. Models were developed

using S-PLUS version 7 (Insightful Corporation,

Seattle, Washington, USA) with the rpart library

(Therneau and Atkinson 2000) and were pruned to

avoid overfitting using 10-fold cross-validation subsets

of the original BBS data set. For this analysis, we used

the best model (100 m, 1 km, 10 km, or multiscale) for

each species (Table 1) based on a measure of the amount

of variation explained by the model (Table 2). The CRT

models make county-level predictions of (1) the prob-

ability of presence under average conditions and (2) the

number of birds per route that could be expected if a

route existed in that county under average conditions.

Theoretical models

The HSI models for the five focal species were

developed through a literature review identifying impor-

tant components of habitat structure at the site and

landscape scales that could be mapped from NLCD,

FIA, or other national geospatial data sets (Tirpak et al.

2009a, b). To the extent possible, we restricted our review

to studies done within the central and southcentral

United States. Our review focused on variables thought

to limit abundance or density of the species (e.g., percent

canopy cover). Thus, we assumed that each species could

be limited by a unique set of variables and that each

limiting factor was necessary in the model (i.e., no

alternative candidate models were considered). Once we

selected the variables and identified data points repre-

senting the relative abundance or density of a species at

different levels of each habitat component, we fit

equations using CurveExpert 1.38 software that output

values between 0 and 1 representing the suitability (i.e.,

index of relative abundance or density) expected for a

particular value of a variable (software available on-

line).11 We supplemented reported data with hypothe-

sized data based on generalizations from the literature

when we found fewer than three data points with which

to fit a curve. Final HSI values for each species were

calculated as a three-step process: the geometric mean of

the site-scale variables, the geometric mean of the

landscape-scale variables, and then the geometric mean

of the site and landscape means. This approach assumes

that each variable is equally important to the species and

that if any model variable is absent or does not have a

value in the suitable range for the species (i.e., received a

suitability value of 0) then the location is unsuitable (i.e.,

HSI value is 0). We sent the models to two to five experts

on each species for review, and models were revised

based on their comments (Tirpak et al. 2009b). The

models were applied to NLCD, FIA, NED, and

ecological subsection boundary (Cleland et al. 1997)

data sets to depict the spatial configuration of suitable

habitats (Table 1). To map HSI values across the CH

BCR, we developed an ecologically stratified randomi-

zation process in cooperation with staff at FIA Spatial

Data Services to interpolate FIA plot data at the

resolution of the NLCD (30-m pixel) (Tirpak et al.

2009a). Initially, this was accomplished using the 1992

NLCD and associated periodic FIA surveys. These

model outputs were validated against BBS data (Table 2;

Tirpak et al. 2009c). We later applied the HSI models to

the 2001 NLCD and the first annual 5-year cycle of FIA

surveys for each state (1999–2005). For this analysis, we

used model outputs associated with the later time period.

The HSI models predict the relative suitability of habitat

on a scale from 0 (non-habitat) to 1 (optimal habitat).

Although the model outputs are mapped at a 30-m

resolution, the interpolation of FIA data used here

11 hhttp://curveexpert.webhop.bizi
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TABLE 1. Variables included for each species model under each modeling approach, by data source.

Approach
and species�,§

Model type
and output

Data source�

BBS FIA

HSC

All five abundance year, day of year,
start temperature,
easting, northing

mean live basal area, density of
trees �12 inches dbh, % forest
in oak–hickory

CRT

ACFL presence–absence na na
abundance na na

CERW presence–absence na understory dbh CV
abundance na stand size, understory dbh CV

PRAW presence–absence na density of all trees
abundance na na

RHWO presence–absence na understory height CV
abundance na density of understory trees

WEWA presence–absence na na
abundance na na

HSI

ACFL suitability na overstory canopy cover
CERW suitability na density of trees .30 inches dbh, overstory canopy cover
PRAW suitability na overstory canopy cover, density of trees ,1 inch dbh
RHWO suitability na density of all snags, density of snags .12 inches dbh,

density of trees .11 inches dbh
WEWA suitability na density of trees ,1 inch dbh

FS

All five suitability na same as HSI

HA

All five suitability na forest type, stand size class

Notes: Data sources not used in a model are identified with ‘‘na.’’ For variables in the FIA, note that 1 inch¼ 2.54 cm.
� Data source codes: BBS, Breeding Bird Survey; FIA, Forest Inventory and Analysis; NLCD, National Land Cover Database;

NED, National Elevation Dataset.
� Modeling approach codes: HSC, hierarchical spatial count model; CRT, classification and regression tree models; HSI, habitat

suitability index model; FS, forest structure database model; HA, habitat association database model.
§ American Ornithological Union species codes (Pyle and DeSante 2003): ACFL, Acadian Flycatcher; CERW, Cerulean

Warbler; PRAW, Prairie Warbler; RHWO, Red-headed Woodpecker; WEWA, Worm-eating Warbler.

TABLE 2. Evaluation statistics for species–habitat relationship models for five species in the Central Hardwoods Bird
Conservation Region.

Model
type Evaluation method

Acadian
Flycatcher

Cerulean
Warbler

Prairie
Warbler

Red-headed
Woodpecker

Worm-eating
Warbler

HSC� coefficient of determination (R2) 0.43 0.62 0.78 0.38 0.49
HSC� coefficient of variation in the root

mean squared error (CV[RMSE])
2.30 2.97 0.89 1.26 1.30

CRTp� relative error explained 0.77 0.81 0.56 0.50 0.65
CRTa� relative error explained 0.62 0.68 0.56 0.55 0.68
HSI§ Spearman rank correlation, r 0.47 (,0.001) 0.44 (,0.001) 0.41 (,0.001) 0.11 (0.308) 0.66 (,0.001)
HSI§ GLM models predicting

abundance from HSI scores, R2
0.05 (0.095) 0.21 (,0.001) 0.12 (0.005) 0.23 (,0.001) 0.41 (,0.001)

HSI§ HSI parameter, b 4.25 (0.043) 0.63 (0.023) 15.32 (,0.001) �3.36 (0.827) 1.80 (,0.001)

Notes: The forest structure and habitat association models were not evaluated. Values in parentheses are P values.
� For hierarchical spatial count (HSC) models, R2 provides a relative measure of predictive accuracy on a scale from 0 to 1

(higher better); CV[RMSE] provides a measure of bias with higher values indicating more bias.
� CRTp is a classification tree model predicting presence/absence; CRTa is a regression tree model predicting relative

abundance. Relative error explained denotes the proportional reduction in error (PRE) of the given model compared to a null
model and is analogous to R2.

§ HSI stands for habitat suitability index model. Results are for HSI models taken from Tirpak et al. (2009c: Tables 1 and 2).
Models were considered validated for use if there was a significant (P , 0.10) correlation of HSI score to abundance, linear model
including HSI predicted abundance better (P , 0.10) than an intercept-only model, and the coefficient on HSI variable in the linear
model was significantly .0 (P , 0.10).
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makes the forest structure variables spatially represen-

tative only at broader scales such as ecological subsec-

tion (portions of multiple counties, 70 000 to 2.6 million

ha). Thus, the models are most appropriately interpreted

at that scale; the utility of these model outputs at finer

resolutions is unknown.

In addition to the HSI models, we developed two

database models for each species (Table 1) because this

type of approach is being used for some BCR-scale

conservation planning. The forest structure (FS) data-

base approach assumed that the forest structure

variables in the HSI models were sufficient to accurately

depict variation in habitat suitability across the BCR

(i.e., site-scale factors are influenced by and adequately

capture landscape processes). We used the FS models to

calculate habitat suitability for each species on each FIA

plot. To estimate habitat suitability we assembled FIA

data tables for each state within Microsoft Access

(Microsoft, Redmond, Washington, USA) and (1)

derived forest structure variables for each FIA plot

condition , (2) applied suitability relationship equations

developed for those variables in the HSI model building

process (above and Tirpak et al. 2009b), (3) calculated

the geometric mean of resulting suitability values across

model variables for a species for each condition on each

plot, and (4) used FIA area expansion factors (U.S.

Department of Agriculture Forest Service 2010) to

calculate an area-weighted relative suitability value

across all plot conditions for counties and subsections.

As with the HSI models, the FS models predict the

relative suitability of habitat on a scale from 0 (non-

habitat) to 1 (optimal habitat).

The habitat association (HA) database approach

assumed that the relative suitability scores assigned to

combinations of forest type and successional stage

described in Hamel (1992) were sufficient to accurately

depict variation in habitat suitability across the BCR

(i.e., complex models are not any better than simple

ones). We generated model outputs for this approach

using a similar method to the one used for the FS

database approach. First, we converted the categorical

rankings of habitat associations used by Hamel (1992) to

numerical values (unsuitable ¼ 0.000, marginal ¼ 0.333,

suitable¼ 0.667, and optimal¼ 1.000). Next we assigned

these values to combinations of forest type and

successional age class for each condition on each FIA

plot. We then used the area expansion factors to

calculate an area-weighted relative suitability value

across all plot conditions for counties and subsections.

As with the HSI models, the HA models predict the

relative suitability of habitat on a scale from 0 (non-

habitat) to 1 (optimal habitat).

Model evaluation

Because we do not know the true distribution of these

species and were not working solely with presence–

TABLE 1. Extended.

Data source�

NLCD NED Other

% forest land (within 100 m),
residual of developed index,
forest interspersion/juxtaposition index

residual of
wetness index

spatial autocorrelation, 100-m buffer,
interaction of %forest and
wetness residual

largest patch index, area-weighted mean shape index na multi-scale buffer
forest patch density, area-weighted forest core area

index, core % of landscape
na multi-scale buffer

% core forest na physiographic region, 1-km buffer
na na 100-m buffer
na na 100-m buffer
largest patch index, mean shape index CV na multi-scale buffer
% core forest na 1-km buffer
total edge contrast index, largest patch index na 100-m buffer
area-weighted forest core area index na 1-km buffer
forest core % of landscape, forest largest patch index na 100-m buffer

forest type, patch size, % forest land (1 km) landform subsection boundaries, distance to stream
forest type, patch size, % forest land (1 km) landform subsection boundaries
forest type, patch size, % forest land (1 km) landform subsection boundaries
forest type landform subsection boundaries

forest type, patch size, % forest land (1 km) landform, slope subsection boundaries

na na na

na na na
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absence data, most objective techniques for comparing

model predictions (Fielding and Bell 1997, Guisan and

Zimmermann 2000) were not available to us. We

attempted to use a collection of available point count

data sets as an independent evaluation of predictions

across the models (Guisan and Zimmermann 2000,

Thuillier 2009) to illuminate differences between ap-

proaches and to provide strong grounds for recom-

mending one approach over another. Unfortunately,

point count data available to us were spatially restricted

and at scales of organization different than the BBS data

used in the HSC and CRT modeling approaches.

Further, due to differences in methodologies of each

approach (e.g., categorical vs. continuous data), no

single approach to estimating the variance explained

(e.g., R2) exists for direct comparison of model

performance. Therefore, for three of the five modeling

approaches we used internal measures of performance

(Table 2). We evaluated the HSC approach by

comparing predicted to observed abundance (R2 and

coefficient of variation in the root mean squared error,

CV[RMSE]). We evaluated the CRT approach by

examining the variability in the data explained (propor-

tional reduction in error) by the model (Table 2). We

evaluated the HSI approach evaluated model fit by

examining the relationship between model outputs and

BBS data (i.e., independent evaluation data set) using

three criteria: rank correlation (r), fit of a regression

model (R2) predicting subsection-level abundance as a

function of average HSI values, and the direction and

significance of the HSI parameter in the regression

model (Table 2; Tirpak et al. 2009c).

Model comparison

Ideally, we would compare the models based on the

known distribution and abundance of each species.

Lacking such knowledge, we used two approaches to

compare models – rank correlations among model

outputs and comparison of spatial correspondence.

Rank correlation analysis.—We compared model

outputs using rank correlations in SAS (SAS Institute

2004) because each approach predicted different quan-

tities (birds per route vs. relative suitability). The models

were developed for different resolutions (HSC, town-

ship; CRT, county; HSI, ecological subsection; FS and

HA, FIA plot), so we first needed to summarize the

model outputs for each species such that they were

directly comparable across modeling approaches. We

opted to summarize outputs at two resolutions, county

(n ¼ 204) and ecological subsection (n ¼ 59), because

they represent the finest and broadest resolutions at

which the model outputs can be appropriately inter-

preted based on the resolution of their input data sets.

We calculated rank correlations separately for each

resolution. For analysis of county-level model outputs,

we only considered counties completely within the BCR

because the HSI approach truncated model outputs at

the BCR boundary (truncated or not). For the CRT

models, we used model outputs directly for determining

the county-level ranks and calculated area-weighted

averages of the model outputs for determining the

subsection-level ranks. The HSC and HSI approaches

were mapped at scales finer than a county, so we

calculated the mean of cells encompassed by a county or

subsection using the zonal statistics tool in ArcGIS 9.2

(ESRI, Redlands, California, USA) to determine ranks

for each resolution. Habitat suitability estimates from

the FS and HA model approaches were produced for

counties and subsections directly based on plot mem-

bership reported in the FIA database. Because the FIA

program limits their forest estimates to areas that have a

minimum of 12 plots, counties with ,12 plots were

combined with other counties as needed based on

adjacency and the number of data points. Grouped

counties received identical model outputs and ranks.

Spatial correspondence.—We examined correspon-

dence of mapped outputs from each modeling approach

in two ways. First, we assessed model congruence by

simply counting the number of models that ranked a

particular location (i.e., county or subsection) in the top

10% of locations at that resolution. Second we assessed

confidence in our rankings by assessing the variability in

predicted ranks for each location. To assess variability,

we calculated the coefficient of variability (%CV) across

rank values provided by each modeling approach at

each location. Locations with lower %CV values

indicate areas with higher agreement among models

(and thus higher confidence) regardless of relative rank.

As an example of how ensemble prediction might be

used, we mapped the combination of congruence and

confidence values at the subsection resolution to define the

areas most likely to be high quality for each species (Fig.

2). Lacking an objective function to rank one model better

than another (see Model evaluation), we created our

ensemble predictions by combining outputs equally from

all five models for each species. For simplicity, we divided

congruence values into two ranges ad hoc: low (zero to

one models) and high (two to six models). Similarly, we

divided the range of %CV values into high and low

confidence ranges using a threshold value of 50%. The

resulting four categories (high congruence, high confi-

dence; high congruence, low confidence; low congruence,

low confidence; and low congruence, high confidence)

represent a continuum of conservation value from highest

value to lowest. Risk associated with conservation

decisions is lowest for the first and last categories and

highest for the middle two categories. Given space

restrictions, we chose to present only subsection-level

results because this resolution was most appropriate for

interpretation across all modeling approaches; county-

level results can be derived from the Appendices.

RESULTS

Hierarchical spatial count models for Cerulean

Warbler and Prairie Warbler were relatively accurate

in predicting patterns in relative abundance, with
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predictions for Prairie Warblers less biased (i.e., lower

coefficient of variation in the root mean squared error)

than those for Cerulean Warblers (Table 2). Predictions

from HSC models for Red-headed Woodpeckers were

the least accurate but were among the least biased of the

five species modeled. The performance of CRT results

varied slightly by model type with classification trees

(presence–absence) outperforming regression trees

(abundance) for Cerulean Warblers and Acadian

Flycatchers but not for the other species; overall the

Prairie Warbler and Red-headed Woodpecker models

explained less variation in presence and abundance than

CRT models for other species (Table 2). All species

passed the evaluation tests for the HSI approach, with

the exception of the Red-headed Woodpecker model

which did not show significant rank correlation between

HSI value and BBS abundance or have a significant and

positive HSI parameter in the regression model (Table 2;

Tirpak et al. 2009c).

Correlation analysis

Pairwise comparisons of ranked outputs from each

modeling approach indicated congruity in predictions,

with most rank correlations as significant (P values ,

FIG. 2. Congruence-confidence maps for five focal species showing model congruence (i.e., number of models ranking the
subsection in the top 10%) and ranking confidence (i.e., inverse of variability in ranking score across models). High model
congruence indicates that 2–6 models ranked the subsection in the top 10%, and low congruence indicates that zero or one model
ranked it that high. High model confidence indicates a low range of variability (,50% coefficient of variation) in rank values for the
location.
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0.05) and positive (Table 3). Model correspondence was

highest for the Worm-eating Warbler where all pairwise

comparisons were significant and positive (Appendix A:

Tables A.9 and A.10). Model correspondence was lowest

for the Red-headed Woodpecker where most rank

correlations between the theoretical models and the

statistical models were significant and negative

(Appendix A: Tables A.7 and A.8). For three of the

five species we examined (Acadian Flycatcher, Cerulean

Warbler, and Worm-eating Warbler) outputs from the

HSC models were more highly correlated with the

theoretical models than with the abundance outputs

from the CRT models (Appendix A).

Spatial correspondence

Model congruence ranged from zero (i.e., no model

ranked a county or subsection in the top 10% of locations

at that resolution) to five at the county resolution and six

at the subsection resolution. Confidence (%CV) values

ranged from 2% to 178% across species at the county

resolution and 5% to 133% at the subsection resolution.

Maps showing ranks of model outputs under each

modeling approach individually and combined are

available in Appendix B. Ensemble predictions (Fig. 2)

reflect the uncertainty across models in predictions of the

best places to focus conservation efforts. Worm-eating

Warbler is the only species for which any subsection

showed both high congruence (i.e., more than one model

ranked the subsection in the top 10%) and high

confidence (i.e., ,50% CV across model ranks). For all

species, most subsections fell in the low congruence, high

confidence category indicating these areas are not likely

good places for conservation effort because they do not

contain a high abundance of birds or high quantity of

suitable habitat.

DISCUSSION

Selection of a modeling approach is an important step

in the conservation planning process (Will et al. 2005,

National Ecological Assessment Team 2006), but little

guidance is available to assist planners (Elith and

Graham 2009). In our experience, planners select a

single modeling approach because they (or the research-

ers they employ) are familiar with it or because it is the

latest technique. Frequently more than one suitable

technique is available (Murtaugh 2009, Thuiller et al.
2009). Whereas it is widely recognized that different
modeling approaches have their own set of benefits and

drawbacks (Segurado and Araujo 2004, Elith and
Graham 2009, Fitzgerald et al. 2009), different models
may imply different conservation strategies (Hauser et

al. 2007) and little attention is paid to the potential
consequences of choosing a particular modeling ap-
proach (Langford et al. 2009). By choosing a single

modeling approach, planners are essentially formulating
a problem in one of many possible ways and accepting
its objectives, constraints and assumptions as the only

ones applicable (Wilson et al. 2005).
The modeling approaches we examined represent the

broad array of approaches currently used for avian

conservation planning at landscape and regional scales.
They reflect the different philosophies (statistical vs.
theoretical) and constraints (e.g., technical expertise,

data availability) of the planners who employ them. By
comparing these methods for the same species in the

same geography, we illuminated the different conserva-
tion priorities each approach would suggest to landscape
and regional conservation planners. Although each

approach was based on a similar set of spatial data,
direct comparison was complicated by differences in
response variables (abundance vs. suitability), data

processing techniques, predictor variables, and mapping
resolutions. Thus, we conducted a real-world compar-
ison of these modeling approaches that reveals the

complexity and potential consequences of implementing
uncoordinated conservation planning.

Although most conservation planning for birds in

North America now occurs under the auspices of a Joint
Venture (e.g., Loesch et al. 1995) or similar partnership,
not all organizations within a geography are a part of the

partnership and existing partnerships frequently bisect
administrative boundaries (e.g., states or provinces may
be part of multiple Joint Ventures; see description available

online).12 If individual planning groups use different
modeling approaches (formal or not) as the basis for their
planning, conservation efforts may be at odds, as was often

TABLE 3. Summary of rank correlations among pairs of model outputs across five focal species.

Correlations

Modeling approach

CRTp CRTa HSC HSI FS HA

County-level resolution

Positive 16 (0.64) 18 (0.72) 19 (0.76) 21 (0.84) 19 (0.76) 21 (0.84)
Significant 13 (0.52) 12 (0.48) 17 (0.68) 19 (0.76) 15 (0.60) 16 (0.64)

Subsection-level resolution

Positive 20 (0.80) 19 (0.76) 20 (0.80) 22 (0.88) 21 (0.84) 22 (0.88)
Significant 14 (0.56) 14 (0.56) 16 (0.64) 17 (0.68) 15 (0.60) 14 (0.56)

Note: For each modeling approach, we report the total number of positive correlations with the other modeling approaches, the
number of significant positive correlations (P , 0.05), and the proportion (in parentheses) of all combinations (n¼ 25) that each
represents at the county (n ¼ 204) and subsection (n ¼ 59) resolutions.

12 hwww.fws.gov/birdhabitat/jointventures/index.shtmi
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observed, for instance, in early attempts at regionalizing

state-level GAP (Crist and Jennings 1997).

Despite differences in methods and data, the various

models we developed generally ranked locations (i.e.,

counties or subsections) in the Central Hardwoods

similarly, resulting in significantly positive pairwise

correlations. This might suggest that the choice of

modeling approach is relatively inconsequential to the

planning process, especially at broader spatial scales

where we tended to observe larger correlation coeffi-

cients. However, differences among ranks at specific

locations reveal uncertainty in model outputs and

subsequent planning decisions. One way to address this

dilemma is to combine model predictions. Sometimes

called ensemble classifiers or consensus models, com-

bined models are akin to multi-model inference

(Burnham and Anderson 2002) and are used in remote

sensing applications as a way to assess uncertainty when

ground truth data are sparse or impractical to collect

(e.g., Liu et al. 2004) and in climate change (e.g., Tebaldi

and Knutti 2007) or other applications whose primary

purpose is projection of future conditions. Combining

model predictions by simple averaging or by using some

sort of weighting system (Liu et al. 2004, Araujo and

New 2007, Marmion et al. 2009) provides an alternative

to selecting a ‘‘best’’ model (Thuiller et al. 2009) and

produces robust predictions (Marmion et al. 2009). Of

course, the accuracy of combined predictions is depen-

dent upon the accuracy of the underlying individual

model predictions (Araujo and New 2007).

We believe ensemble prediction provides stronger

justification for conservation action when models corrob-

orate with one another. Where different modeling

approaches identify the same counties or subsections as

high priorities (i.e., high ranks), the risks associated with

conducting conservation in these priority areas should be

lower (i.e., greater confidence that the models are correct).

Relying on the predictions of a single model incorporates

an unknown amount of risk that is difficult to quantify.

Visual inspection of our output maps (Fig. 2) revealed

different conservation priorities presented by each model

(i.e., all models did not highlight the same subsections as

highest ranks), even for Worm-eating Warbler where

correlations among models were strongest. Models that

produce conflicting predictions, as observed for the Red-

headed Woodpecker, are still valuable in that they can

shed light on the sources of error and may provide

improved understanding of spatial patterns and processes

(Liu et al. 2004), especially when the discrepancies are

examined in light of their ecological context (e.g.,

unsaturated habitat, competition, conspecifics, historical

context; Fielding and Bell 1997).

Congruence-confidence mapping

We created ensemble predictions using a method that

combined similarity of model predictions and their

variability (i.e., congruence-confidence). We turned to

this approach for two reasons. First, a simple average of

ranked outputs tended to produce maps where few if any

locations were ranked high, masking model congruence.

At the county resolution, this resulted in part because

the CRT approach produces a limited number of

discrete outputs (two to four terminal nodes for models

in this study), which produced many tied ranks that were

assigned a value at the midpoint of the range by SAS.

This problem was alleviated to some extent at the

subsection resolution by the area-weighted averaging of

county values. Another issue with simple averaging was

that the failure of the independent evaluation analysis

left us without an objective method to determine if a

model approach should be included in the average (i.e.,

was a given model accurate?). We expected modeling

approaches that incorporated landscape characteristics

(HSC, CRT, and HSI) to perform better, but we

observed high rank correlations with the spatially

implicit database approaches (FS and HA). One might

also expect that statistical models should have more

predictive power than models based on theory or expert

opinion. The high correlations between the statistical

and theoretical models did not support that expectation

either, likely because the BBS was designed to detect

population trends over large regions (Sauer et al. 2003)

not to inform landscape-scale habitat modeling (Bart et

al. 1995, Lawler and O’Connor 2004, Harris and Haskell

2007). Thus, we used all five model outputs and did not

examine how results might differ by using different

subsets of the models to produce the ensemble predic-

tions. Second, we could not produce a weighted average

of scores because there were no consistent measures of

accuracy across all modeling approaches. The congru-

ence–confidence method allowed identification of the

extent to which models were in agreement about what

areas likely contained abundant populations in good

quality habitat (i.e., received high ranks from multiple

models with low variation across ranks) in contrast to

areas that did not (i.e., low ranks with low variation).

Areas that did not fall in these classifications represent

areas where conservation action incorporates more risk

due to greater uncertainty.

The conservation implications of the congruence-

confidence maps are most illustrative for the Worm-

eating Warbler, where the modeling approaches we

examined were in greatest agreement. Of the six subsec-

tions where congruence was high, three were prioritized

(i.e., ranked in the top 10%) by four models, one was

prioritized by three models, and two were prioritized by

two models (see Appendix B: Fig. B.10). Although there

was relatively high variability in model ranks for four of

these subsections (i.e., low confidence), they are likely to

be the best locations for conservation actions to conserve

abundant populations (as predicted by the statistical

models) in abundant habitat (as predicted by the

theoretical models). The 44 subsections that models

consistently did not prioritize (i.e., no congruence and

high confidence) are less likely to be strategic locations for

conservation efforts for this species.
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The conservation implications of this analysis are

much less clear for the Red-headed Woodpecker. No

subsections were prioritized by more than two models

and 37 subsections had low confidence, indicating there

was considerable disagreement among the models. This

disagreement between models is nonetheless informa-

tive, with at least two potential explanations. The first

possible explanation is that one or several of the models

are bad. The HSI model for this species did not pass all

evaluation tests (Tirpak et al. 2009c) suggesting that it

poorly depicts the habitat relationships of this bird

because of poorly parameterized functions, improperly

weighted functions, or the absence of key limiting

factors from the model. As the FS and HA database

models were based on similar relationships (with minor

modifications) underlying the HSI model, it was not

surprising that all three were positively correlated with

each other and negatively correlated with the statistical

models. However, the fact that no subsection was

prioritized by more than two models indicates there

was little congruence among the theoretical models or

the statistical models. Thus, developing conservation

plans based on any of these models by itself is likely to

entail substantial risk.

Another possible explanation is that all the models are

missing some key component of the species-habitat

relationship for the Red-headed Woodpecker, a conten-

tion supported by the fact that this species had the least

accurate HSC model and the poorest fit CRT models

among the species we examined. This species uses forests

and woodlands in open landscapes such as orchards,

parks, open agricultural country, savanna-like grass-

lands with scattered trees, and forest edge in addition to

more forested areas such as bottomland forests (Smith et

al. 2000 and references therein). The statistical models

contained different variables that might capture this

open landscape component (HSC, forest interspersion/

juxtaposition index; CRT, total edge contrast index),

but the theoretical models did not. In the absence of a

good independent evaluation data set, it is difficult to

say which, if either, statistical model better captures this

component of Red-headed Woodpecker habitat use.

Despite the confusion about where conservation prior-

ities are for this species, there was agreement across the

models about where they are not. All eight of the

subsections where confidence in ranks was high received

low priority ranks. Thus, even in this extreme case,

combining models provided useful information for

conservation planning. Developing and testing hypoth-

eses about the causes underlying the different prioriti-

zations can further our understanding of habitat

relationships for this species and help us generate more

useful models in the future.

CONCLUSIONS

Species habitat models are a simplification of a

complex biological system (Laurent et al. 2010). This

simplification means species habitat models cannot be

perfectly explanatory or predictive (Van Horne 2002).

They are, in essence, wrong, but they can provide useful

inference despite their errors (Starfield 1997) and

inability to capture all sources of variance in species

abundance (Cushman et al. 2008). As Van Horne (2002)

suggested, the modeling techniques biogeographers

employ are closely tied to their modeling objectives.

Thus, to properly evaluate the utility of these different

modeling approaches, we need an explicit characteriza-

tion of how the model parameters and mapped products

are to be used. In conservation design, maps of species–

habitat predictions are used to identify where regional

resources may be devoted to provide the most efficient

and effective return on the investment (‘‘bang for the

buck’’). This return on investment comes in terms of

increased population size or stability or decreased risk of

extinction.

This comparison of independently generated species-

habitat models implied that the choice of modeling

approach may be less a function of predictive accuracy

and more a function of needs, abilities, and ease of use

and interpretation. All approaches tended to concur on

the relative spatial distribution of abundance and

quality habitats in the BCR for each species. That said,

each modeling approach implied a different conserva-

tion design, even for the species with the most

congruence among model outputs. Under the business

model of strategic habitat conservation (National

Ecological Assessment Team 2006), the true efficacy of

a model built and tested in the biological planning phase

is not known until the conservation design and

conservation delivery phases are complete and the

project is in the monitoring and evaluation phase.

Thus, reliance on a single modeling approach as the

basis for conservation planning is risky because a great

deal of resources can be invested and the return (e.g.,

population stability) may not materialize for years (i.e.,

it will be a long time before you know how wrong your

model is). Most of the models we compared here passed

evaluation tests, yet there were important discrepancies

among model predictions and the conservation design

they implied.

Assessing uncertainty is important for assessing the

tradeoffs inherent in conservation planning (Langford et

al. 2009). Developing multiple habitat models is one way

to assess the uncertainty within these biological planning

tools. This approach avoids the trap of thinking that one

modeling approach or set of approaches (e.g., statistical

models) will consistently perform better. We encourage

conservation planners to adopt an ‘‘all the tools in the

toolbox’’ mindset and base their decisions upon a

critical, objective evaluation of each model’s output

that includes an assessment of why it might yield the

answer it does (i.e., know thy model). Although

developing multiple models may mean more work,

lengthen the conservation planning process, and slow

initial progress, it will reduce uncertainty thereby

helping us make more effective progress. Conservation
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action occurs at the intersection of programmatic

opportunities, habitat suitability, and land use oppor-

tunities (J. L. Burger, Jr., and R. Hamrick, oral

presentation, summarized in Thogmartin et al. 2009).

We need to minimize uncertainty on the habitat side of

this equation to the greatest extent possible so that we

may be strategic about the opportunities we seize.
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